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The effect of a small-scale topography on large-scale, small-amplitude oceanic motion
is analysed using a two-dimensional quasi-geostrophic model that includes free-
surface and β effects, Ekman friction and viscous (or turbulent) dissipation. The
topography is two-dimensional and periodic; its slope is assumed to be much larger
than the ratio of the ocean depth to the Earth’s radius. An averaged equation of
motion is derived for flows with spatial scales that are much larger than the scale
of the topography and either (i) much larger than or (ii) comparable to the radius
of deformation. Compared to the standard quasi-geostrophic equation, this averaged
equation contains an additional dissipative term that results from the interaction
between topography and dissipation. In case (i) this term simply represents an
additional Ekman friction, whereas in case (ii) it is given by an integral over the
history of the large-scale flow. The properties of the additional term are studied in
detail. For case (i) in particular, numerical calculations are employed to analyse the
dependence of the additional Ekman friction on the structure of the topography and
on the strength of the original dissipation mechanisms.

1. Introduction
Sea-floor topography plays an important role in the dynamics of the oceans through

a variety of mechanisms. One of these, which is captured in simple quasi-geostrophic
models, is the vortex stretching that results from changes in the water depth. Because
of the Earth’s rotation, it leads to the appearance of a restoring force and associated
waves, the topographic Rossby waves (e.g. Pedlosky 1987). Topographic Rossby waves,
and more generally Rossby waves supported by both topography and β-effect, have
been studied theoretically in detail in various settings (e.g. Rhines 1970a, b; Rhines
& Bretherton 1973; Reznik & Tsybaneva 1999, and references therein).

A question of great practical interest concerns the effect of the smallest scales of
the topography: these scales cannot be resolved in numerical simulations, yet they
are likely to have a significant influence on the large-scale motion. Theoretical studies
are thus crucial to assess the importance and nature of this influence. Most rigorous
studies of this type concentrate on the effect of topography on the propagation of
Rossby waves; they use the linearized barotropic (or multilayer) quasi-geostrophic
equation and employ asymptotic techniques relying on the separation between the
scale of the topography and the scale of the motion. Thomson (1975), for instance,
studied the weak scattering of Rossby waves that is caused by a shallow random
topography (see also Prahalad & Sengupta 1986). More recent work focuses on
the (Anderson) localization of Rossby waves, that is, on the existence of localized
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free waves (Sengupta, Piterbarg & Reznik 1992; Sengupta 1994) – or similarly the
evanescence of forced waves (Klyatskin 1996; Klyatskin, Gryanik & Gurarie 1998) –
that results from the randomness of the topography.

These studies have two important features in common: they neglect dissipative
effects and consider one-dimensional topographies. Here, by contrast, we are inter-
ested in the interactions between topography and dissipation and we consider a
two-dimensional topography. We therefore analyse the barotropic quasi-geostrophic
equation including Ekman friction and a viscous term that can be regarded as a
parameterization of turbulent dissipation. Using a multiple-scale expansion, we derive
an averaged (or homogenized) version of this equation valid for motion with a scale
much larger than that of the topography. As is detailed in § 2, the scaling is chosen so
that the effect of the topography appears at leading order in the averaged equation.
This effect is described by an additional dissipative term, which in general depends
on the history of the large-scale flow. In the limit of a radius of deformation small
compared to the scale of the motion (and of the order of the topography scale),
however, it reduces to an additional Ekman friction.

Thus, the interplay between topography and dissipative effects is shown to lead
primarily to an enhancement of the dissipation. The physical mechanism behind
this enhancement is clear: when interacting with the topography, the large-scale
motion generates a weak small-scale flow. Because of its small scale, and despite its
small amplitude, this flow is efficiently damped by the Ekman friction and turbulent
dissipation; it acts thus as an energy sink for the large-scale motion. This picture
appears transparently in the formal derivation of the averaged equation given in § 3.

We analyse in some detail the additional dissipative term, first (i) for small radius
of deformation (the long-wave regime, § 4), then (ii) for a radius of deformation of the
same order as the scale of the motion (the short-wave regime, § 5). Numerical compu-
tations are required to evaluate the coefficients that appear in the averaged equation
for a given topography. In case (i), these coefficients are the (constant) components of
an Ekman friction tensor. We calculate them for two simple topographies and discuss
their asymptotic form in the limit of strong and weak dissipation. In case (ii), by
contrast, the coefficients are functions of time and their numerical computation raises
several issues going beyond the scope of this paper. We thus restrict our attention to
their analytical properties. A few remarks conclude the paper in § 6; they are devoted
to the relationship between our study and that of Gama, Vergassola & Frisch (1994)
on negative viscosity, to the inclusion of nonlinear effects in the model, to possible
extensions of our results, and to related work based on closure techniques.

2. Non-dimensional equations
We start with the linearized two-dimensional quasi-geostrophic equation, including

free-surface and β effects, topography, Ekman friction and a viscous term that
parameterizes turbulent dissipation. In dimensional form, this equation is written as

∂t
(∇2ψ − R−2ψ

)
+ β∂xψ +

f

h
z · (∇η × ∇ψ) + r∇2ψ − ν∇4ψ = 0, (2.1)

where ψ is the streamfunction, z a unit vertical vector, r the Ekman friction coefficient
and ν the eddy viscosity (see e.g. Pedlosky 1987, p. 233). The local Coriolis parameter
and total ocean depth have been taken as f + βy and h + η, where f, β and h are
constants and h� η; the Rossby radius of deformation R is defined by R :=

√
gh/f.
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In order to encompass various regimes with the same scaling, (2.1) is non-
dimensionalized in a slightly unconventional way. We introduce a characteristic
length L, whose interpretation varies with the regime (see below) and a parameter µ
such that the spatial scale of the motion is given by µ−1L. The horizontal scale of
the topography is then taken as Lt = εµ−1L, with ε � 1. Using µ−1L, µ−2f−1 and h
as reference length, time and height, respectively, (2.1) is rewritten in dimensionless
form by performing the substitutions

x→ µ−1Lx, t→ µ−2f−1t, β → µfL−1β,

η → hη, r → fr, ν → ε2µ−2L2fν,

}
(2.2)

leading to

∂t
(
µ2∇2ψ − λ2ψ

)
+ β∂xψ + z · (∇η × ∇ψ) + r∇2ψ − ε2ν∇4ψ = 0, (2.3)

where λ := LR−1 and

η = η(ε−1x). (2.4)

Equation (2.3) may be employed to study the following regimes: (i) µ� 1, λ = O(1),
corresponding to motion with a scale much larger than the radius of deformation;
and (ii) µ ∼ λ = O(1), corresponding to motion with a spatial scale of the order of
the radius of deformation. In case (i), which we refer to as the long-wave regime, L
has the order of magnitude of the radius of deformation, whereas in case (ii), which
we refer to as the short-wave regime, L has the order of magnitude of the spatial
scale of the motion. Note that the standard rigid lid approximation is obtained as a
limiting case of (ii) with λ� 1.

The scaling factors proportional to µ in (2.2) have been chosen so that the β-effect,
topography and Ekman friction all appear in (2.3) at leading order in µ. This choice
ensures that the three effects have a similar importance in both the short-wave and
the long-wave regimes – in that sense it is the most general. In order for the turbulent
dissipation to affect only the small-scale motion (with scale Lt), the eddy viscosity ν
has been rescaled by a factor ε2. We emphasize that topography scale Lt is assumed
small compared to the scale of the motion µ−1L, but not necessarily small compared
to L; for the long-wave regime, in particular, the choice ε = µ leads to a topography
scale equal to L and of the order of the radius of deformation.

The essential feature of our scaling is that the potential-vorticity gradient associated
with the topography is much larger (O(ε−1)) than that associated with the β-effect.
This is immediately apparent from (2.3) when one notes that ∇η = O(ε−1). In terms
of the dimensional variables, this indicates that

β ∼ ε fη
hLt

,

or, using β ∼ f/a, where a is the Earth’s radius,

Lth

aη
∼ ε� 1.

In the latter form, our scaling assumption can be interpreted as the requirement that
the characteristic slope of the topography η/Lt is much larger than the aspect ratio
of the ocean h/a – the topography is thus relatively steep. Under this assumption,
which is satisfied in many areas of the world’s oceans, the small-scale topography
has a leading-order effect on the large-scale quasi-geostrophic motion. A significantly
shallower topography as considered, for instance, by Thomson (1975) and Prahalad &
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Sengupta (1986), has a much weaker effect and affects the quasi-geostrophic motion
over distances and times that are long compared to the typical spatial and temporal
scales of the motion.

3. Multiple-scale analysis
Our objective in this section is to derive from (2.3) an approximate evolution

equation for the large-scale quasi-geostrophic motion that implicitly accounts for the
effect of the small-scale topography. To this end, we employ the standard multiple-
scale technique (e.g. Hinch 1991), also known as homogenization in certain contexts
(e.g. Bensoussan, Lions & Papanicolaou 1989). We slightly extend (2.4) and consider a
topography that can have large-scale changes in addition to small-scale fluctuations,
i.e. η = η(x, ε−1x). Introducing X := ε−1x as the fast spatial variable, we decompose
η into slowly and rapidly varying parts according to

η = η(x) + η′(x,X ),

with η = 〈η〉 and 〈η′〉 = 0, where 〈·〉 is a suitably defined average. Hereafter, we omit
the prime and denote the small-scale component of the topography simply by η. We
assume that this component is a periodic function of X , in which case the average
is the spatial average over the period.† It should be emphasized that the periodicity
requirement applies to the small-scale topography only: the (large-scale) flow domain,
and the large-scale topography can be arbitrary.

Introducing the transformation ∇→ ε−1∇X +∇ into (2.3), we seek a solution in the
form of a power series

ψ = ψ(0)(x,X , t) + εψ(1)(x,X , t) + ε2ψ(2)(x,X , t) + · · · .
Substituting this expansion, one finds at order O(ε−2),

Aψ(0) = 0,

where

A = µ2∂t∇2
X + z · (∇Xη × ∇X ) + r∇2

X − ν∇4
X .

A solution is simply ψ(0) = ψ(0)(x, t), i.e. the leading-order streamfunction depends
only on the slow spatial variables. At order O(ε−1) one finds

Aψ(1) = −z · (∇Xη × ∇ψ(0)
)
. (3.1)

In general, ψ(1) is given as a convolution: assuming ψ(1)(x,X , 0) = 0, it has the form

ψ(1)(x,X , t) =

∫ t

0

w(x,X , t− τ) · ∇ψ(0)(x, τ) dτ+ ψ(1)(x, t), (3.2)

where the average part ψ(1)(x, t) is so far undetermined. The kernel vector w(x,X , τ)
is the periodic, zero-mean solution of

Aw = − (z × ∇Xη) δ(τ), with w(x,X , 0) = 0, (3.3)

and is well defined in principle.

† The more sophisticated situation where η is almost-periodic can be treated with no essential
modification; the random case is somewhat more delicate (cf. Papanicolaou 1995).
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Returning to the expansion of (2.3), we impose a solvability condition for ψ(2) by
averaging the O(1) equation. This leads to an evolution equation for ψ(0), namely

∂t(µ
2∇2ψ(0) − λ2ψ(0)) + β∂xψ

(0) + z · (∇η × ∇ψ(0)) + r∇2ψ(0)

+z · 〈∇Xη × ∇ψ(1) + ∇η × ∇Xψ(1)〉 = 0. (3.4)

Using (3.2), this equation is rewritten as

∂t(µ
2∇2ψ(0) − λ2ψ(0)) + β∂xψ

(0) + z · (∇η × ∇ψ(0)) + r∇2ψ(0)

+∇ ·
∫ t

0

rt(x, t− τ) · ∇ψ(0)(x, τ) dτ = 0, (3.5)

where the tensor rt is given by

rt = 〈(z × ∇Xη)w〉 (3.6)

and w satisfies the auxiliary equation (3.3).
Equation (3.5), which governs the evolution of the large-scale, leading-order stream-

function, is the central result of this paper. Its first line contains all the terms of the
original equation (2.3) except for the eddy viscosity term, but the topography that
appears explicitly is the averaged topography η. The effect of the small-scale topog-
raphy, or more precisely of its interaction with the Ekman friction and turbulent
dissipation, is described by the convolution term on the second line. As we dis-
cuss in detail below, this is an additional dissipative term which, in the short-wave
regime, depends on the history of the large-scale flow; as a consequence ψ(0) obeys an
integro-differential rather than differential equation. In the long-wave regime µ → 0,
however, rt(x, τ)→ r̃(x)δ(τ) for a suitably defined r̃ , because (3.3) does not involve a
time derivative; the additional term thus becomes a simple (possibly anisotropic and
space-dependent) Ekman friction. We first consider this regime as it is very relevant
physically and proves easily tractable.

4. Long-wave regime
In the long-wave limit µ→ 0, the evolution equation (3.5) simplifies to

−λ2∂tψ
(0) + β∂xψ

(0) + z · (∇η × ∇ψ(0)) + r∇2ψ(0) + ∇ · (r̃ · ∇ψ(0)) = 0. (4.1)

The Ekman friction tensor r̃ , defined by rt(x, τ) = r̃(x)δ(τ) is given by

r̃ = 〈(z × ∇Xη) w̃〉, (4.2)

where w̃ is such that w(x,X , τ) = w̃(x,X )δ(τ) and satisfies the auxiliary equation

(L+ r) w̃ = −∇−2
X (z × ∇Xη) , (4.3)

with

L := ∇−2
X [z · (∇Xη × ∇X )]− ν∇2

X , (4.4)

and 〈w̃〉 = 0. (Equation (4.3) is derived from (3.3) by applying the operator ∇−2
X which

is well-defined when acting on zero-mean functions as is the case here; its form proves
convenient in the next section when we compare the short- and long-wave regimes.)

When the small-scale topography η(x,X ) is given, the Ekman friction tensor r̃ can
be computed from (4.2) by first solving the linear differential equation (4.3) for a
periodic w̃. Because its coefficients depend on X , this equation can only be solved
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numerically in general.† However, some properties of r̃ may be derived directly from
(4.2)–(4.3). We discuss them before presenting numerical results.

4.1. Properties of r̃

We first remark that (4.3) becomes ill posed when r = ν = 0. To see this, note that
with r = ν = 0 the general solution of (4.3) takes the closed form

w̃(x,X ) = −X +Φ[η(x,X )],

where Φ[·] is an arbitrary vector function. It is clear that it is not possible to
choose Φ so that w̃ is a periodic, zero-mean function of X . Equation (4.3) has thus
no satisfactory solution when r = ν = 0. This shows the importance of including
dissipative effects, either Ekman friction or viscous dissipation, at leading order in
the original equation (2.1).

Next we establish that r̃ is positive definite. This is essential because it guarantees
that the effect of the small-scale topography, parameterized by the last term in (4.1),
is dissipative as could be expected on physical grounds. Consider the scalar v · r̃ · v,
for an arbitrary vector v depending on x only. The following equalities follow from
(4.2)–(4.3) using integration by parts:

v · r̃ · v = −〈∇2
X [(L+ r)v · w̃] v · w̃〉

= 〈−∂ (η, v · w̃) v · w̃ + r|∇X (v · w̃)|2 + ν|∇2
X (v · w̃)|2〉

= 〈r|∇X (v · w̃)|2 + ν|∇2
X (v · w̃)|2〉 > 0,

where ∂(·, ·) is the Jacobian with respect to the fast variable X . The positive definiteness
of r̃ then follows from the fact that both r and ν are positive.

In the spirit of Gama et al. (1994), we then study the restrictions on the form
of r̃ imposed by possible discrete symmetries of η. Consider transformations of the
coordinates and of the topography of the form

X 7→ X ′ = AX , η(x,X ) 7→ ±η(x,X ′),

where A is a constant tensor. If A is orthogonal, the Laplacian ∇2
X and thus the

dissipative terms of (2.1) are invariant under the transformation; if in addition the
topographic term z · (∇Xη × ∇Xψ) is invariant, then Ekman friction tensor r̃(x) is also
invariant. It follows from the formula for the transformation of tensors that

r̃(x) = ATr̃(x)A. (4.5)

Constraints on the coefficients of r̃ are readily derived from this expression. Table
1 gives the form of r̃ obtained for some particular symmetries. Note that the origin
of the coordinate system (X,Y ) can be chosen arbitrarily – useful choices ensure
that the origin is a centre of symmetry for η. Note also that when η does not
depend on the large-scale coordinates x, r̃ can be symmetrized. When in addition
η(X,Y ) = η(Y ,−X), r̃ becomes proportional to the identity tensor, indicating that
the effect of the small-scale topography is simply to renormalize the original Ekman
friction coefficient r.

Two final observations can be made about the scaling of r̃ . First, it is obvious
from (4.2)–(4.3) that r̃ depends on the amplitude of the topography in a non-trivial

† Analytical expressions for r̃ and more generally for rt(τ) can be derived for topographies
consisting of isolated features with simple, step-like profiles when the distance between these
features is asymptotically large. This is used in Vanneste (2000) for an explicit calculation of the
change in Rossby-wave frequency that is induced by topography in the short-wave regime.
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Symmetry r̃

η(X,Y ) = −η(Y ,X)

(
a b
b a

)
η(X,Y ) = η(Y ,−X)

(
a b
−b a

)
η(X,Y ) = −η(−X,Y )

(
a 0
0 b

)
Table 1. Form of the Ekman friction tensor r̃ when the topography η(x,X ) is invariant under
particular transformations of the fast spatial coordinates X . a and b are real functions of x.

way. However, it can be verified that under the transformation (η, r, ν) 7→ α(η, r, ν),
where α is a constant, the topography-induced Ekman friction tensor transforms
according to r̃ 7→ αr̃ . It is therefore sufficient to consider the dependence of r̃ on r
and ν for a fixed amplitude of the topography. Second, (4.2)–(4.3) indicates that r̃ is
independent of the scale of the topography if the viscosity vanishes. More specifically,
it can be shown that the transformation η(x,X ) 7→ η(x, αX ), ν 7→ α−2ν, leaves r̃
unchanged. Since we expect the influence of the Ekman friction to dominate over
that of the turbulent dissipation away from horizontal boundaries, this suggests that
the topography-induced dissipation in the ocean’s interior may depend only weakly
on the scale of the topography.

4.2. Numerical computation of r̃

We illustrate the theoretical results of the previous section by computing r̃ for
specific choices of the topography. For simplicity we consider topographies that are
independent of the large-scale coordinates x. The results can nevertheless be employed
if the amplitude of the topography (but not its shape) is changing on the large scale
by taking advantage of the scaling transformation (η, r, ν) 7→ α(η, r, ν) described in
§ 4.1.

Equation (4.3) is solved numerically by expanding η and w̃ in truncated Fourier
series. Both functions have a vanishing mean, so that their expansions do not include
the wavevector (0, 0). Introducing the Fourier expansions in (4.3) and projecting on
each mode leads to a linear system of equations for the Fourier components of w̃.
Once this system is solved, r̃ is easily computed from (4.2). When the expansion of η
contains only a few modes, the matrix associated with this linear system is sparse and
efficient numerical techniques can be employed to compute the solution. The number
of Fourier modes retained in the expansion of w̃ depends on the form of η and is
chosen large enough for its influence on the results to be insignificant. Typically we
have used 40 wavenumbers in each direction, corresponding to 4 × 40 × 40 = 6400
real coefficients in the expansion of w̃.

The first topography we consider is

η = cosX cosY . (4.6)

The symmetries of this topography together with table 1 indicate that r̃ is proportional
to the identity tensor, i.e. r̃ = r̃I . The scalar r̃ completely characterizes the enhancement
of dissipation due to topography. Figure 1 shows the dependence of r̃ on the original
Ekman friction coefficient r for different values of the eddy viscosity ν. Note that the
maximum value of r̃ is attained either at r = 0 or at intermediate r, depending on ν,
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Figure 1. Topography-induced Ekman friction coefficient r̃ as a function of the original Ekman
friction coefficient r for the topography η = cosX cosY . The different curves correspond to the
different values of the viscosity ν indicated by the arrows.
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Figure 2. Components of the topography-induced Ekman friction tensor r̃ = diag (a, b) as a function
of the Ekman friction coefficient r for the topography η = sin (3X) sinY . Results obtained with
viscosity ν = 0 (solid curves) and ν = 0.025 (dotted curves) are displayed.

while r̃ systematically decreases for large r. In general r̃ tends to a finite value when
r → 0; it is not so, however, when ν = 0, in which case r̃ → 0 as r → 0 (see next
section).

Although in practice the value of r̃ depends on the maximum amplitude of the
topography, taken here equal to unity, it is clear from figure 1 that the topography-
induced Ekman friction may be of the same order as or larger than the original Ekman
friction and may thus have a significant impact on the large-scale quasi-geostrophic
motion.

As a second illustration we consider the anisotropic topography

η = sin (3X) sinY . (4.7)

According to table 1, the corresponding Ekman friction tensor is diagonal: r̃ =
diag (a, b). Figure 2 shows the two coefficients a and b as a function of r for ν = 0 and
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ν = 0.025. The two coefficients have very different magnitudes: a, which is associated
with the direction of the smaller scale of the topography, is significantly smaller than b,
which is associated with the direction of the larger scale. Comparison with the results
obtained with the isotropic topography (4.6) suggests that the (turbulent) viscous
dissipation has a stronger impact when the topography is anisotropic. To make such
a comparison meaningful, we should use isotropic and anisotropic topographies with
similar total wavenumbers; this is not the case of (4.6) and (4.7) which have total
wavenumbers

√
2 and

√
10, respectively. However, we can exploit the transformation

property discussed in § 4.1 and infer that the value of r̃ for the isotropic topography
η = cos (

√
5X) cos (

√
5Y ) (which has the same total wavenumber

√
10 as (4.7)) for

ν = 0.025 is the same as that obtained for (4.6) with ν = 5 × 0.025 = 0.125.
Figure 1 shows r̃ for the close value ν = 0.1; comparison with the curves on figure 2
corresponding to ν = 0.025 reveals the stronger influence of viscous dissipation in the
anisotropic case, leading to small values for a and b and to their weak dependence
on r.

The two examples above emphasize the subtle relationship that exists between
the strength of the dissipation mechanisms originally present in the system (Ekman
friction and turbulent dissipation) and the importance of their enhancement by
topography. To gain insight into this relationship we now study the dependence of r̃
on r and ν when these parameters are asymptotically large or small.

4.3. Asymptotic form of r̃

When r, ν or both are large, r̃ can be computed using a regular perturbation
expansion. Although such an expansion can easily be carried out to higher order (for
instance to provide an analytic expression for r̃ valid for r or ν only moderately large,
cf. Gama et al. 1994), we derive the leading-order term only. Let Γ � 1 be a large
parameter and assume that r ∼ ν = O(Γ ). The solution to (4.3) can be sought as an
expansion in inverse powers of Γ , namely

w̃ = Γ−1w̃1 + Γ−2w̃2 + · · · .
The leading-order solution is clearly

w̃1 = −z ×
[( r
Γ
− ν

Γ
∇2
X

)−1 ∇−2
X η

]
,

leading to the approximation

r̃ = −
〈

(z × ∇Xη) z ×
[(
r − ν∇2

X

)−1 ∇−2
X η
]〉

+ O(Γ−2) (4.8)

for the Ekman friction tensor. Clearly, r̃ is inversely proportional to r and ν. The
form of r̃ is particularly simple when η is an eigenfunction of the Laplacian, i.e. when

∇2
Xη = −Λ2η

for some Λ, as is the case for (4.6) and (4.7). It is indeed easy to show that (4.8)
becomes

r̃ =
1

Λ2(r + νΛ2)
〈(z × ∇Xη)(z × ∇Xη)〉.

Figure 3 confirms this asymptotic approximation through a comparison with numer-
ical results for the topography (4.6) for which r̃ = r̃I . We note that the asymptotic
solution converges rapidly to the numerical one as r increases, and that moderate
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Figure 3. Topography-induced Ekman friction coefficient r̃ as a function of the Ekman friction
coefficient r for the topography η = cosX cosY , with ν = 0, 0.25 and 0.5. The numerical solution
(solid curves) is compared to the asymptotic solution (dotted curves) valid for large r or ν.

values of ν are sufficient for the asymptotic solution to be a good approximation even
at small r.

In the opposite limit of small r and ν, the derivation of the asymptotic form of r̃
necessitates the use of a singular-perturbation technique. This is because (4.3) with
r = ν = 0 is ill posed, as demonstrated in § 4.1. The asymptotics may depend on the
details of the topography; for definiteness and simplicity we consider the topography
(4.6). We first treat the case ν � r � 1 for which the viscous dissipation can be
ignored. The two components of (4.3) may then be regarded as forced advection–
diffusion equations, interpreting η as the flow streamfunction, the components of
w̃ as scalar concentrations, and r as the diffusivity. With this interpretation, our
problem becomes analogous to the determination of an effective diffusivity for the
transport of passive scalars in time-independent, space-periodic flows in the small-
diffusivity (large-Péclet-number) limit. The latter problem has been studied in detail
by Rosenbluth et al. (1987) and Shraiman (1987). These authors concluded from a
boundary-layer analysis that the effective diffusivity scales like the square root of the
diffusivity. Here, we can similarly conclude that

r̃ ∼ r1/2. (4.9)

As indicated by the work of Rosenbluth et al. (1987) and Shraiman (1987), the explicit
derivation of the proportionality constants would be tedious and yield final results
that need to be evaluated numerically in general. Therefore we do not attempt this
derivation; we nevertheless explain the origin of the scaling (4.9) and confirm its
validity numerically.

The topography (4.6) consists of a periodic juxtaposition of hills and hollows
bounded by separatrices on which η = 0. A piecewise solution to (4.3) with r = ν = 0
is given by

w̃ = −X +Φi, (4.10)

where Φi are constant vectors in each hill or hollow which we label by i. These vectors
can be chosen to ensure that the average of w̃ vanishes. A valid solution to (4.3),
however, needs to be smooth everywhere, and hence must differ from (4.10) near the
separatrices. In the vicinity of the separatrices a boundary layer forms in which the
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Figure 4. Topography-induced Ekman friction coefficient r̃ as a function of r for ν = 0 (diamonds)
and as a function of ν for r = 0 (crosses) for the topography η = cosX cosY . The straight lines
indicates the power laws r1/2 and ν1/4 valid in the asymptotic regimes ν � r � 1 and r � ν � 1,
respectively.

Ekman friction is not negligible so as to allow the smooth transition between each
hill or hollow. The boundary-layer width scales like r−1/2. This is seen by writing (4.3)
near the separatrices using η and an angle-like variable θ as independent coordinates,
following Rosenbluth et al. (1987). Neglecting derivatives along topography lines in
the Laplacian leads to

∂w̃

∂θ
+ r

∂

∂η

( |∇Xθ|
|∇Xη|

∂w̃

∂η

)
= −z × ∇Xη.

It is clear from this equation that the Ekman-friction term with r � 1 can balance the
other terms provided that changes of order unity in w̃ take place over spatial scales
of order r1/2 in the direction of η, i.e. provided that a boundary layer of width r1/2

forms. Now, in the calculation of r̃ = r̃I from (4.2) it can be verified using integration
by parts and the vanishing of η on separatrices that the contribution of (4.10) (which
neglects the boundary layers) vanishes. At leading order r̃ is therefore determined by
the contribution of the boundary layers, and it is thus proportional to their width, r1/2.

To verify the validity of this argument, we have computed r̃ numerically for small
values of r with ν = 0. The result, displayed in figure 4, confirms the power-law
scaling r̃ ∼ r1/2. (Note that a high resolution is required for accurate results with
weak dissipation; a truncation using 120× 120 Fourier modes has been employed for
the calculation corresponding to the two smallest values of r.)

In the regime r � ν � 1 where the Ekman friction is negligible, a boundary-layer
approach similar to that sketched above can also be employed, providing the power-
law scaling r̃ ∼ ν1/4. This scaling has also been confirmed by numerical computations
with r = 0 and the results are displayed in figure 4. We emphasize that the power-law
results are valid only for topographies of the type (4.6) with closed contour lines and
η = 0 at separatrices. For different topographies, in particular with open contour lines,
r̃ can tend to a constant as r or ν tend to zero. In any case our results indicate that the
topography-induced Ekman friction dominates over the original friction mechanisms
when these become vanishingly weak.
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5. Short-wave regime

We now return to the evolution equation for the large-scale streamfunction (3.5)
valid in the short-wave regime µ = O(1). In this regime, the effect induced by the
topography is clearly more complex than a simple additional Ekman friction, since
it is described by a convolution term that depends on the history of the large-scale
flow. In this section we study some of the properties of this convolution term.

It is interesting to note that linear integro-differential equations similar to (3.5)
appear in other areas of physics, notably in the theory of heat conduction with finite
propagation speed (e.g. Gurtin & Pipkin 1968). The work of Miller (1978) establishing
the existence, uniqueness and continuity of solutions provides a particularly useful
reference for our problem.

The behaviour of (3.5) depends on the kernel rt(x, τ). To obtain this kernel from
(3.6), equation (3.3) governing the time evolution of w needs to be solved first.
Although this ultimately requires numerical calculation, some progress can be made
by using the Laplace transform. Denoting Laplace transforms by a caret and the
Laplace variable by u, we transform (3.3) and (3.6) into

(L+ µ2u+ r)ŵ = −∇−2
X (z × ∇Xη) , (5.1)

and

r̂ t = 〈(z × ∇Xη) ŵ〉, (5.2)

withL defined by (4.4). Comparing (5.1) with (4.3) indicates that ŵ satisfies the same
equation as the vector w̃ employed in the long-wave regime but with µ2u+ r replacing
r; a similar relationship exists between r̂ t and r̃ . This implies that properties of r̃ , in
particular the symmetry properties discussed in § 4.1, carry over to rt. Of course, an
essential difference is that w̃ needs to be calculated for a fixed value of r, whereas
ŵ needs to be calculated for µ2u + r on curves in the complex plane as is required
for the Laplace inversion. More precisely, it is the analytic continuation of ŵ that is
required, since (5.1) defines ŵ for Re (u) > −r only. The numerical computation of the
analytic continuation of ŵ from (3.3) for u in the complex plane and its use for the
Laplace inversion providing rt(x, τ) represent a challenging problem whose treatment
is beyond the scope of this paper. Here we only consider properties of rt that can be
derived analytically.

5.1. History dependence

We first study the dependence of the dissipation-induced term on the flow history. This
can be done by studying the decay of rt(τ) as τ → ∞, since this decay characterizes
the speed at which the memory of the flow history is lost. The Laplace inversion
formula indicates that the time evolution of rt is governed by the singularities of ŵ in
the complex u-plane. These are associated with the spectrum ofL; precisely, they are
located where u is such that −µ2u− r belongs to the spectrum of L. It can be shown
using theorem IV-1.16 of Kato (1966) that L−1 is compact, and hence (see Kato
1966, theorem III-6.29) that the spectrum of L consists of a countable number of
eigenvalues, ln say (n = 1, 2, . . .). Therefore the only singularities of ŵ(u) are poles at

un = − ln + r

µ2
, n = 1, 2, . . . , (5.3)
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and the evolution of rt(τ) is typically exponential: assuming that all the eigenvalues
are simple, rt(x, τ) takes the form

rt(x, τ) =
∑
n

Cn(x) exp (unτ),

for some vector functions C n(x).
An upper bound on the real part of the un can be derived. Consider the eigenvalue

equation

(L− ln)vn = 0

for L. Multiplying by ∇2
Xv
∗
n , applying the averaging operator 〈·〉, and taking the real

part gives

Re (ln) = ν
〈|∇2

Xvn|2〉
〈|∇Xvn|2〉 > νΛ

2
0,

where −Λ2
0 is the largest eigenvalue of the Laplacian (acting on periodic zero-mean

functions). From (5.3) we then derive the upper bound

Re (un) 6 −r + νΛ2
0

µ2
< 0,

which provides the time scale for the loss of memory in the system. Clearly, the
memory is lost rapidly if r or ν are large, or if µ is small. As discussed in § 4, there is
no memory when µ→ 0 and the evolution is governed by a differential equation.

5.2. Dissipative character

It is important to confirm that the convolution term associated with the small-scale
topography in (3.5) is dissipative and thus corresponds to an enhancement of the
dissipation as anticipated. In the long-wave regime µ → 0, when the topography-
induced term has the form of a standard Ekman friction, we established this by
proving that r̃ is positive definite, which implies a monotonic decrease of the energy
of the flow. Here, in order to deal with the convolution, we take a sightly different
approach and show directly that the topography-induced term causes an exponential
damping of the streamfunction.

Consider the evolution of the potential vorticity associated with the convolution
term only; it is governed by the equation

∂t(µ
2∇2ψ(0) − λ2ψ(0)) + ∇ ·

∫ t

0

rt(x, t− τ) · ∇ψ(0)(x, τ) dτ = 0

obtained from (3.5) by removing the terms associated with the β-effect, large-scale
topography and dissipation. Using the Laplace transform, it is easy to show that the
time dependence of ψ(0) takes the form ψ̂(x) exp (ut), where u is an eigenvalue of the
(generalized) eigenvalue problem

u(µ2∇2ψ̂ − λ2ψ̂) + ∇ · (r̂ t · ∇ψ̂) = 0. (5.4)

We now establish that all solutions are such that Re (u) < 0, corresponding to the
damping of ψ expected for a dissipative system. Multiplying the previous equation by
ψ̂∗, integrating over the (large-scale) fluid domain, and using the boundary conditions
we find

u

∫
(µ2|∇ψ̂|2 + λ2|ψ̂|2) dx+

∫
∇ψ̂∗ · r̂ t · ∇ψ̂ dx = 0. (5.5)
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Now (5.1)–(5.2) implies that for any complex vector v depending on x only,

v∗ · r̂ t · v = −v∗ · 〈∇2
X (L+ µ2u∗ + r)ŵ∗ŵ〉 · v

= 〈−∂(η, v∗ · ŵ∗)v · ŵ +
(
µ2u∗ + r

) |∇X (v · ŵ)|2 + ν|∇2
X (v · ŵ)|2〉.

On taking the real part it follows that

Re
(
v∗ · r̂ t · v) = 〈(µ2Re (u) + r)|∇X (v · ŵ)|2 + ν|∇2

X (v · ŵ)|2〉.
Letting v = ∇ψ̂ in this expression and introducing it into the real part of (5.5) leads
to an equation of the form

Re (u)P = −Q,
where P and Q are both positive. We thus conclude that the eigenvalues u of (5.4)
satisfy Re (u) < 0 as claimed.

5.3. Rossby waves for µ� 1

In this subsection, we consider (3.5) for µ � 1 and investigate the effect of the
topography-induced dissipation on Rossby-wave propagation using a perturbation
expansion. Since µ = 0 corresponds to the long-wave regime studied in § 3 for which
the friction does not depend on the flow history, the history dependence appears only
at O(µ2) and affects slightly the wave propagation.

Starting with (3.5) (with η = 0), we introduce a solution in the form of a wave:

ψ(0) = ψ̂ exp [i(k · x− ωt)] ,
where k = (kx, ky) is a wavevector and ω a frequency. Assuming a small-scale
topography that does not vary on the large scale and that is sufficiently symmetric so
that rt = rtI , we obtain the dispersion relation

ω(µ2k2 + λ2) + kxβ + ik2 [r + r̂t(−iω)] = 0, (5.6)

where k = |k| and r̂t(−iω) is the Laplace transform of rt (with r̂ t = r̂tI ) evaluated
at u = −iω. So far the hypothesis µ � 1 has not been employed and (5.6) is the
exact dispersion relation. It relates ω to k implicitly and may be solved numerically
if r̂t(u) is known for u in the complex plane. Taking advantage of the hypothesis
µ � 1, however, we can solve (5.6) analytically by expanding ω and r̂t in powers of
µ2 according to

ω = ω0 + µ2ω1 + · · · and r̂t(u) = r̃0 + µ2u r̃1 + · · · .
In the above, the r̃n, n = 1, 2, · · ·, do not depend on u: the dependence on u which
emerges from (5.1)–(5.2) appears explicitly in the powers of µ2u multiplying the r̃n.
This also implies that the r̃n are real. Introducing these expansions into (5.6) leads to

ω0 = −βkx
λ2
− i

k2(r + r̃0)

λ2
, ω1 = −k

2

λ2
ω0(1 + r̃1), · · · .

The leading-order frequency is the one found for long Rossby waves when an Ekman
friction with coefficient r + r̃0 is taken into account. The coefficient r̃0 describing
the enhancement of the friction due to the small-scale topography is the same as r̃
computed in § 3. The correction ω1 to the frequency consists of two terms. The first
one (term 1 in the brackets) is usual: it is associated with the finite scale of the waves
and is seen to emerge from the expansion in powers of µ2 of the exact formula for the
frequency ω = λ2ω0/(λ

2 + µ2k2) that holds in the absence of dissipation. The second
correction (term r̃1 in the brackets) appears as a result of the history dependence.
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Using the assumed symmetry property, we can compute the r̃n from (5.1)–(5.2)
using a single component of ŵ, say the first one which we denote by ŵ. Expanding
this component in powers of µ2u according to

ŵ = w̃0 + µ2uw̃1 + · · ·
leads after introduction into (5.1) to the sequence of differential equations

∂(η, w̃0) + r∇2
X w̃0 − ν∇4

X w̃0 = ∂Y η,

∂(η, w̃1) + r∇2
X w̃1 − ν∇4

X w̃1 = −∇2
X w̃0, · · ·

which need to be solved numerically. Once this is done, the r̃n are computed from

r̃0 = −〈∂Y η w̃0〉, r̃1 = −〈∂Y η w̃1〉, · · · .
It does not appear that r̃1 has a definite sign, so the qualitative effect of the history
dependence may depend on the particular topography considered; in particular, the
history dependence leads to a frequency shift of the waves which may have any sign.
It is however possible to derive bounds on r̃1 by simple manipulation of the equations
above. Assuming ν = 0 for simplicity, it is easy to establish the following equalities
using integration by parts:

r̃0 = r〈|∇Xw0|2〉, r̃1 = 〈|∇Xw0|2 + 2r∇Xw0 · ∇Xw1〉,
and r〈|∇Xw1|2〉 = −〈∇Xw0 · ∇Xw1〉.

The Cauchy–Schwartz inequality applied to the last equation gives r2〈|∇Xw1|2〉 6
〈|∇Xw0|2〉. Further manipulations involving the other two equalities finally yield the
useful bounds

− r̃0
r
6 r̃1 6

r̃0

r
.

6. Concluding remarks
Our analysis is closely related to the various studies of negative viscosity in two-

dimensional flows, in particular that of Gama et al. (1994), which are concerned with
the evolution of large-scale flows superposed on small-scale currents. Both currents
and topography are associated with a small-scale potential-vorticity gradient, but
in addition currents introduce a small-scale advection. It turns out that the effects
of the potential-vorticity gradient and advection on the large-scale flow cancel out
at leading order. Indeed, if Ψ (X ) is the streamfunction of the small-scale current
(taken independent of x for simplicity) and Q(X ) = ∇2

XΨ the associated vorticity, the
contribution of the current to the solvability condition at O(1) reads

〈z · (∇ψ(1) × ∇XQ+ ∇XΨ × ∇∇2
Xψ

(1))〉
and is easily shown to vanish using integration by parts. Because of this cancellation,
the effect of small-scale currents is smaller than that of a topography, and the scaling
employed in studies of negative viscosity is different from the scaling employed here.
In particular, the averaged equation obtained, for instance, by Gama et al. (1994)
describes the evolution of the flow on a time scale slower than that considered here.

The multiple-scale analysis of § 3 is applied directly to the linearized quasi-
geostrophic equation. It is therefore natural to ask how small the amplitude of
the large-scale flow should be for the approach to be valid. We can answer this
question and indicate what is the first non-trivial modification of our analysis that
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appears when nonlinear effects are taken into account. To do this, we scale the
streamfunction (non-dimensionalized by µ−2fL2) by an amplitude parameter δ � 1,
and reinstate the nonlinear term in (2.3). This term has the form δ z · (∇ψ × ∇∇2ψ).
With ψ(0) = ψ(0)(x, t), the largest nonlinear term appears at O(δε−2) and is given by
z · [(∇ψ0 + ∇Xψ(1)) × ∇X∇2

Xψ
(1)], whereas the largest nonlinear term with non-zero

average appears at O(δ). (A cancellation similar to that discussed above is essential
for this scaling.)

For δ � ε, the nonlinearity introduces no modification to the averaged equation
(3.5), indicating that the linear theory is valid. Taking δ ∼ ε introduces the first
non-trivial modification in § 3, with the appearance of the largest nonlinear term at
O(ε−1) in equation (3.1) determining ψ(1). This equation becomes

Aψ(1) + z · [(∇ψ0 + ∇Xψ(1))× ∇X∇2
Xψ

(1)] = −z · (∇Xη × ∇ψ(0)). (6.1)

Since it is nonlinear, there is no simple relationship between ψ(1) and ψ(0) similar
to (3.2). Thus, although the O(1) equation (3.4) remains formally the same (because
the largest nonlinear term with non-zero average appears at O(ε) only), it does
not provide a closed evolution equation for ψ(0). This is again in contrast with
the situation encountered for large-scale flows superposed on small-scale currents
where a weakly nonlinear evolution equation for the large-scale flow can be derived
self-consistently (Gama et al. 1994). Here, such a self-consistent weakly nonlinear
description cannot be obtained since a solution to the (fully) nonlinear equation (6.1)
is needed to represent the first non-trivial effects of nonlinearity on the large-scale
flow. It might be possible to model the relationship between ψ(1) and ψ(0) that emerges
from (6.1) heuristically using a closure technique, e.g. based on statistical arguments
(e.g. Merryfield & Holloway 1996), but we do not investigate this possibility further
here.

The topography considered in this paper is characterized by a unique scale. This
makes it possible to use a straightforward asymptotic technique to derive an averaged
equation for the large-scale flow. It is, however, an extreme idealization which one may
wish to relax. This could be done heuristically using renormalization-group (or coarse-
graining) methods which can be regarded as equivalent to successive applications of
the averaging technique employed here (e.g. Smith & Woodruff 1998; Avellaneda
1994). This should be relatively simple in the long-wave limit since in this case the
averaging simply leads to a change (i.e. a renormalization) of the Ekman friction
coefficient. The matter is more delicate in the short-wave limit because the averaging
modifies the evolution equation drastically. Important effects associated with infra-red
divergence can also be expected to be relevant in view of the typical spectrum of the
ocean’s bottom topography.

The averaging or homogenization approach employed here and the possible ex-
tensions just mentioned rely on a separation between the scales of the topography
and of the leading-order motion. This scale-separation assumption, which is likely to
hold only for a finite time (although a long one, of O(ε−1) at least), is the key to the
implicit treatment of the interaction between flow and topography that is described
by the averaged evolution equation. When it does not hold, (spatial) averaging cannot
be employed and one has to consider explicitly the dynamics of the flow–topography
interaction over a range of scales. This challenging problem requires the use of some
closure technique and, generally, the treatment of the advective nonlinearity (see
Holloway 1978). It has been considered by several authors using a variety of meth-
ods (e.g. Herring 1977; Holloway 1978; Frederiksen 1999; Alvarez & Tintoré 1998,
and references therein); they notably conclude that the flow–topography interaction
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induces a force that drives the flow along topographic lines. Of course, such a force
does not appear directly in our approach since it has the scale of the topography and
hence is eliminated in the averaged evolution equation.

The author wishes to thank O. Bokhove and O. Bühler for helpful comments and
discussions.
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